Skip to main content
Log in

A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Both nonlinear rheology and finite EDL thickness effects on the mixing process in an electroosmotically actuated Y-sensor are being investigated in this paper, utilizing a depthwise averaging method based on the Taylor dispersion theory. The fluid rheological behavior is assumed to obey the power-law viscosity model. Analytical solutions are obtained assuming a large channel width to depth ratio for which a 1-D profile can efficiently describe the velocity distribution. Full numerical simulations are also performed to determine the applicability range of the analytical model, revealing that it is able to provide accurate results for channel aspect ratios of ten and higher and quite acceptable results for smaller aspect ratios down to four. The model is then used for a complete parametric study to determine the effects of the governing parameters on the mixing performance. It is observed that utilizing a fluid with a higher flow behavior index gives rise to a smaller mixing length. Moreover, whereas a larger EDL thickness is accompanied by an improved mixing efficiency, the opposite is true for the channel aspect ratio. The effective diffusivity is also found to be an increasing function of the EDL extent and a decreasing function of the flow behavior index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(c\) :

Number concentration (m−3)

\(c_{0}\) :

Inlet concentration (m−3)

\(\bar{c}\) :

Depthwise averaged concentration (m−3)

\(D\) :

Diffusivity (m−2 s−1)

\(D_{\text{eff}}\) :

Effective diffusivity (m−2 s−1)

\(e\) :

Proton charge (C)

\(E_{x}\) :

Electric field in the axial direction (V m−1)

\(H\) :

Half channel height (m)

\(k_{B}\) :

Boltzmann constant (J K−1)

\(L\) :

Channel length (m)

\(m\) :

Flow consistency index (Pasn)

\(n\) :

Flow behavior index

\(n_{0}\) :

Ion density at neutral conditions (m−3)

\(Pe\) :

Péclet number \({=}(\bar{u}H/D)\)

\(t\) :

Time (s)

\(T\) :

Absolute temperature (K)

\(u\) :

Axial velocity (m s−1)

\(\bar{u}\) :

Mean velocity (m s−1)

\(W\) :

Half channel width (m)

\(x,y,z\) :

Coordinates (m)

\(\tilde{x}\) :

Axial coordinate of moving reference frame (m)

\({\mathbb{Z}}\) :

Valence number of ions in solution

\(\alpha\) :

Channel aspect ratio (=W/H)

\(\delta\) :

Dimensionless thickness of diffusion layer

\(\varepsilon\) :

Fluid permittivity (C V−1 m−1)

\(\zeta\) :

Zeta potential (V)

K :

Dimensionless Debye–Hückel parameter \([{=}H/\lambda _{D}]\)

\(\lambda_{D}\) :

Debye length (m)

\(\mu\) :

Effective viscosity (Pas)

\(\mu_{0}\) :

Dynamic viscosity for a Newtonian behavior (Pas)

\(\rho_{e}\) :

Net electric charge density (Cm−3)

\(\psi\) :

EDL potential (V)

\(\omega\) :

Scaling factor

\(^{*}\) :

Dimensionless variable

References

  • Ahmadian Yazdi A, Sadeghi A, Saidi MH (2014) Rheology effects on cross-stream diffusion in a Y-shaped micromixer. Colloids Surf A 456(1):296–306

    Article  Google Scholar 

  • Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond Ser A 235:67–77

    Article  Google Scholar 

  • Beard DA (2001a) Response to “Comment on ‘Taylor dispersion of a solute in a microfluidic channel’ [J. Appl. Phys. 90, 6553 (2001)]”. J Appl Phys 90:6555–6556

    Article  Google Scholar 

  • Beard DA (2001b) Taylor dispersion of a solute in a microfluidic channel. J Appl Phys 89(8):4667–4669

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Broboana D, Balan CM, Wohland T, Balan C (2011) Investigations of the unsteady diffusion process in microchannels. Chem Eng Sci 66:1962–1972

    Article  Google Scholar 

  • Chakraborty S (2007) Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta 605(2):175–184

    Article  Google Scholar 

  • Chakraborty D, Bose N, Sasmal S, Dasgupta S, Maiti TK, Chakraborty S, DasGupta S (2012) Effect of dispersion on the diffusion zone in two-phase laminar flows in microchannels. Anal Chim Acta 710:88–93

    Article  Google Scholar 

  • Chatwin PC, Sullivan PJ (1982) The effect of aspect ratio on in rectangular longitudinal diffusivity channels. J Fluid Mech 120:347–358

    Article  MATH  Google Scholar 

  • Chen JM, Horng T-L, Tan WY (2006) Analysis and measurements of mixing in pressure-driven microchannel flow. Microfluid Nanofluid 2:455–469

    Article  Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology: engineering applications, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal Chim Acta 559(1):15–24

    Article  MathSciNet  Google Scholar 

  • Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18(5):1883–1892

    Article  Google Scholar 

  • Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249

    Article  Google Scholar 

  • Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11(2):126–132

    Article  Google Scholar 

  • Gorman BR, Wikswo JP (2008) Characterization of transport in microfluidic gradient generators. Microfluid Nanofluid 4:273–285

    Article  Google Scholar 

  • Hinsmann P, Frank J, Svasek P, Harasek M, Lendl B (2001) Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution. Lab Chip 1(1):16–21

    Article  Google Scholar 

  • Holden MA, Kumar S, Castellana ET, Beskok A, Cremer PS (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B Chem 92:199–207

    Article  Google Scholar 

  • Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76(17):2376–2378

    Article  Google Scholar 

  • Jeong S, Park J, Kim JM, Park S (2011) Microfluidic mixing using periodically induced secondary potential in electroosmotic flow. J Electrostat 69:429–434

    Article  Google Scholar 

  • Kamholz AE, Yager P (2001) Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys J 80:155–160

    Article  Google Scholar 

  • Kamholz AE, Yager P (2002) Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations. Sens Actuators B Chem 82:117–121

    Article  Google Scholar 

  • Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71:5340–5347

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows, fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kirby BJ (2010) Micro- and nanoscale fluid mechanics; transport in microfluidic devices. Cambridge University Press, New York

    Book  Google Scholar 

  • Lam YC, Chen X, Yang C (2005) Depthwise averaging approach to cross-stream mixing in a pressure-driven microchannel flow. Microfluid Nanofluid 1(3):218–226

    Article  Google Scholar 

  • Lane DA, Patel IC, Sirs JA (1975) The variation of indicator dilution curves with velocity profile. Phys Med Biol 20:613–623

    Article  Google Scholar 

  • Malkin AY (1994) Rheology fundamentals. ChemTec, Toronto-Scarborough

    Google Scholar 

  • Masliyah JH, Bhattacharjee S (2006) Electrokinetic and Colloid transport phenomena, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  • Mason LR, Ciceri D, Harvie DJE, Perera JM, Stevens GW (2013) Modelling of interfacial mass transfer in microfluidic solvent extraction: part I. Heterogenous transport. Microfluid Nanofluid 14:197–212

    Article  Google Scholar 

  • Paul S, Ng CO (2012) On the time development of dispersion in electroosmotic flow through a rectangular channel. Acta Mech Sin/Lixue Xuebao 28(3):631–643

    Article  MathSciNet  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Sadeghi A, Fattahi M, Hassan Saidi M (2011a) An approximate analytical solution for electro-osmotic flow of power-law fluids in a planar microchannel. J Heat Transf 133(9):091701

    Article  Google Scholar 

  • Sadeghi A, Yavari H, Saidi MH, Chakraborty S (2011b) Mixed electroosmotically and pressure-driven flow with temperature- dependent properties. J Thermophys Heat Transf 25(3):432–442

    Article  Google Scholar 

  • Sadeghi A, Veisi H, Saidi MH, Chakraborty S (2012) Graetz problem extended to mixed electroosmotically and pressure-driven flow. J Thermophys Heat Transf 26(1):123–133

    Article  Google Scholar 

  • Salmon JB, Ajdari A (2007) Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes. J Appl Phys 101:074902

    Article  Google Scholar 

  • Sharma K, Bhat SV (1992) Non-Newtonian rheology of leukemic blood and plasma: Are n and k parameters of power law model diagnostic? Physiol Chem Phys Med NMR 24(4):307–312

    Google Scholar 

  • Song H, Wang Y, Pant K (2012) Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model. Microfluid Nanofluid 12(1–4):265–277

    Article  Google Scholar 

  • Song H, Wang Y, Pant K (2013) Scaling law for cross-stream diffusion in microchannels under combined electroosmotic and pressure driven flow. Microfluid Nanofluid 14(1–2):371–382

    Article  Google Scholar 

  • Sullivan SP, Akpa BS, Matthews SM, Fisher AC, Gladden LF, Johns ML (2007) Simulation of miscible diffusive mixing in microchannels. Sens Actuators B Chem 123:1142–1152

    Article  Google Scholar 

  • Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond Ser A 219(1137):186–203

    Article  Google Scholar 

  • Vakili MA, Sadeghi A, Saidi MH, Mozafari AA (2012) Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels. Colloids Surf A 414:440–456

    Article  Google Scholar 

  • Wang Y, Lin Q, Mukherjee T (2005) A model for laminar diffusion-based complex electrokinetic passive micromixers. Lab Chip 5:877–887

    Article  Google Scholar 

  • Wang Y, Mukherjee T, Lin Q (2006) Systematic modeling of microfluidic concentration gradient generators. J Micromech Microeng 16:2128–2137

    Article  Google Scholar 

  • Wang X, Wang S, Gendhar B, Cheng C, Byun CK, Li G, Zhao M, Liu S (2009) Electroosmotic pumps for microflow analysis. Trends Anal Chem 28(1):64–74

    Article  Google Scholar 

  • Yang C, Li D, Masliyah JH (1998) Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. Int J Heat Mass Transf 41(24):4229–4249

    Article  MATH  Google Scholar 

  • Zhao C, Zholkovskij E, Masliyah J, Yang C (2008) Analysis of electroosmotic flow of power-law fluids in a slit microchannel. J Colloid Interface Sci 326(2):503–510

    Article  Google Scholar 

  • Zholkovskij EK, Masliyah JH, Yaroshchuk AE (2013) Broadening of neutral analyte band in electroosmotic flow through slit channel with different zeta potentials of the walls. Microfluid Nanofluid 15(1):35–47

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author sincerely thanks Iran’s National Elites Foundation (INEF) for their supports during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Sadeghi.

Appendix

Appendix

The coefficients of the velocity distribution in Eq. (9) are given as

$$a_{1} = \frac{{\frac{{2^{1/n} }}{n + 1} + e^{K/n} - e^{1/n} }}{\gamma },\quad b_{1} = \frac{{\frac{{2^{1/n} }}{n + 1}}}{\gamma }, \quad a_{2} = \frac{{e^{K/n} }}{\gamma }, \quad b_{2} = \frac{1}{\gamma }$$
(27)

in which

$$\gamma = \left( {1 - \frac{n}{K}} \right)e^{K/n} + \frac{n - 1}{K}e^{1/n} + \frac{{2^{1/n} }}{{K\left( {1 + 2n} \right)}}$$
(28)

Also, the coefficients of Eq. (20) are given as below

$$\begin{aligned} {\mathbb{A}} & = \frac{{\left( {a_{1} - 1} \right)^{2} }}{6},\quad {\mathbb{B}} = - b_{1} \left( {a_{1} - 1} \right)\left( {\frac{n}{4n + 1}} \right)\left[ {\frac{{n^{2} }}{{\left( {2n + 1} \right)\left( {3n + 1} \right)}} + \frac{1}{2}} \right]K^{{\left( {n + 1} \right)/n}} \\ {\mathbb{C}} & = \frac{{b_{1}^{2} n^{3} K^{{2\left( {n + 1} \right)/n}} }}{{\left( {2n + 1} \right)\left( {3n + 1} \right)\left( {5n + 2} \right)}},\quad {\mathbb{D}} = \frac{{\left( {a_{2} - 1} \right)^{2} }}{6},\quad {\mathbb{E}} = - \frac{{b_{2} \left( {a_{2} - 1} \right)n^{3} }}{{K^{3} }} \\ {\mathbb{F}} & = - \frac{{b_{2} \left( {a_{2} - 1} \right)n^{3} }}{{2K^{3} }},\quad {\mathbb{G}} = \frac{{b_{2}^{2} n^{3} }}{{2K^{3} }} \\ \end{aligned}$$
(29)

Finally, the coefficients of Eq. (21) are obtained as

$${\mathbb{H}} = \frac{{\left( {a_{3} - 1} \right)^{2} }}{6},\quad {\mathbb{I}} = - \frac{{b_{3} \left( {a_{3} - 1} \right)^{2} }}{{K^{3} }}, \quad {\mathbb{J}} = - \frac{{b_{3} \left( {a_{3} - 1} \right)}}{{2K^{3} }},\quad {\mathbb{K}} = \frac{{b_{3}^{2} }}{{2K^{3} }}$$
(30)

in which \(a_{3} = K/\left( {K - \tanh{\textit{}} K} \right)\) and \(b_{3} = K/\left( {K\cosh{\textit{}} K - \sinh{\textit{}} K} \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian Yazdi, A., Sadeghi, A. & Saidi, M.H. A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology. Microfluid Nanofluid 19, 1297–1308 (2015). https://doi.org/10.1007/s10404-015-1645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1645-6

Keywords

Navigation